Frontiers in artificial intelligence‐directed light‐sheet microscopy for uncovering biological phenomena and multiorgan imaging

Author:

Zhu Enbo1234,Li Yan‐Ruide4,Margolis Samuel2,Wang Jing1,Wang Kaidong23,Zhang Yaran1,Wang Shaolei1,Park Jongchan1,Zheng Charlie2,Yang Lili4567,Chu Alison8,Zhang Yuhua9,Gao Liang1,Hsiai Tzung K.123ORCID

Affiliation:

1. Department of Bioengineering University of California, Los Angeles (UCLA) Los Angeles California USA

2. Division of Cardiology, Department of Medicine, David Geffen School of Medicine UCLA Los Angeles California USA

3. Department of Medicine Greater Los Angeles VA Healthcare System Los Angeles California USA

4. Department of Microbiology, Immunology & Molecular Genetics UCLA Los Angeles California USA

5. Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research UCLA Los Angeles California USA

6. Jonsson Comprehensive Cancer Center, David Geffen School of Medicine UCLA Los Angeles California USA

7. Molecular Biology Institute UCLA Los Angeles California USA

8. Division of Neonatology and Developmental Biology, Department of Pediatrics David Geffen School of Medicine UCLA Los Angeles California USA

9. Doheny Eye Institute, Department of Ophthalmology UCLA Los Angeles California USA

Abstract

AbstractLight‐sheet fluorescence microscopy (LSFM) introduces fast scanning of biological phenomena with deep photon penetration and minimal phototoxicity. This advancement represents a significant shift in 3‐D imaging of large‐scale biological tissues and 4‐D (space + time) imaging of small live animals. The large data associated with LSFM require efficient imaging acquisition and analysis with the use of artificial intelligence (AI)/machine learning (ML) algorithms. To this end, AI/ML‐directed LSFM is an emerging area for multiorgan imaging and tumor diagnostics. This review will present the development of LSFM and highlight various LSFM configurations and designs for multiscale imaging. Optical clearance techniques will be compared for effective reduction in light scattering and optimal deep‐tissue imaging. This review will further depict a diverse range of research and translational applications, from small live organisms to multiorgan imaging to tumor diagnosis. In addition, this review will address AI/ML‐directed imaging reconstruction, including the application of convolutional neural networks (CNNs) and generative adversarial networks (GANs). In summary, the advancements of LSFM have enabled effective and efficient post‐imaging reconstruction and data analyses, underscoring LSFM's contribution to advancing fundamental and translational research.

Funder

National Heart, Lung, and Blood Institute

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3