Improving Robotic Hand Prosthesis Control With Eye Tracking and Computer Vision: A Multimodal Approach Based on the Visuomotor Behavior of Grasping

Author:

Cognolato Matteo,Atzori Manfredo,Gassert Roger,Müller Henning

Abstract

The complexity and dexterity of the human hand make the development of natural and robust control of hand prostheses challenging. Although a large number of control approaches were developed and investigated in the last decades, limited robustness in real-life conditions often prevented their application in clinical settings and in commercial products. In this paper, we investigate a multimodal approach that exploits the use of eye-hand coordination to improve the control of myoelectric hand prostheses. The analyzed data are from the publicly available MeganePro Dataset 1, that includes multimodal data from transradial amputees and able-bodied subjects while grasping numerous household objects with ten grasp types. A continuous grasp-type classification based on surface electromyography served as both intent detector and classifier. At the same time, the information provided by eye-hand coordination parameters, gaze data and object recognition in first-person videos allowed to identify the object a person aims to grasp. The results show that the inclusion of visual information significantly increases the average offline classification accuracy by up to 15.61 ± 4.22% for the transradial amputees and of up to 7.37 ± 3.52% for the able-bodied subjects, allowing trans-radial amputees to reach average classification accuracy comparable to intact subjects and suggesting that the robustness of hand prosthesis control based on grasp-type recognition can be significantly improved with the inclusion of visual information extracted by leveraging natural eye-hand coordination behavior and without placing additional cognitive burden on the user.

Publisher

Frontiers Media SA

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3