Abstract
This manuscript presents a hybrid study of a comprehensive review and a systematic (research) analysis. Myoelectric control is the cornerstone of many assistive technologies used in clinical practice, such as prosthetics and orthoses, and human-computer interaction, such as virtual reality control. Although the classification accuracy of such devices exceeds 90% in a controlled laboratory setting, myoelectric devices still face challenges in robustness to variability of daily living conditions. The intrinsic physiological mechanisms limiting practical implementations of myoelectric devices were explored: the limb position effect and the contraction intensity effect. The degradation of electromyography (EMG) pattern recognition in the presence of these factors was demonstrated on six datasets, where classification performance was 13% and 20% lower than the controlled setting for the limb position and contraction intensity effect, respectively. The experimental designs of limb position and contraction intensity literature were surveyed. Current state-of-the-art training strategies and robust algorithms for both effects were compiled and presented. Recommendations for future limb position effect studies include: the collection protocol providing exemplars of at least 6 positions (four limb positions and three forearm orientations), three-dimensional space experimental designs, transfer learning approaches, and multi-modal sensor configurations. Recommendations for future contraction intensity effect studies include: the collection of dynamic contractions, nonlinear complexity features, and proportional control.
Funder
Natural Sciences and Engineering Research Council of Canada
New Brunswick Innovation Foundation
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献