A hybrid model of complexity estimation: Evidence from Russian legal texts

Author:

Blinova Olga,Tarasov Nikita

Abstract

This article proposes a hybrid model for the estimation of the complexity of legal documents in Russian. The model consists of two main modules: linguistic feature extractor and a transformer-based neural encoder. The set of linguistic metrics includes both non-specific metrics traditionally used to predict complexity, as well as style-specific metrics developed in order to deal with the peculiarities of official texts. The model was trained on a dataset constructed from text sequences from Russian textbooks. Training data were collected on either subjects related to the topic of legal documents such as Jurisprudence, Economics, Social Sciences, or subjects characterized by the use of general languages such as Literature, History, and Culturology. The final set of materials used contain 48 thousand selected text blocks having various subjects and level-of-complexity identifiers. We have tested the baseline fine-tuned BERT model, models trained on linguistic features, and models trained on features in combination with BERT predictions. The scores show that a hybrid approach to complexity estimation can provide high-quality results in terms of different metrics. The model has been tested on three sets of legal documents.

Funder

Russian Science Foundation

Publisher

Frontiers Media SA

Subject

Artificial Intelligence

Reference63 articles.

1. Determination of stylistic and genre characteristics of text collections based on part-of-speech compatibility,;Antonova;Trudy mezhdunarodnoj Konferencii,2011

2. Can the law speak directly to its subjects? The limitation of plain language;Assy;J. Law Soc,2013

3. On drafting, interpreting, and translating legal texts across languages and cultures;Azuelos-Atias;Int. J. Legal Dis,2017

4. BegtinI. Plain Russian Language2016

5. Reconstructing readability: recent developments and recommendations in the analysis of text difficulty;Benjamin;Educ. Psychol. Rev,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Keywords, morpheme parsing and syntactic trees: features for text complexity assessment;Modeling and Analysis of Information Systems;2024-06-13

2. Complexity Analysis of Legal Documents;Lecture Notes in Networks and Systems;2024

3. Environmental law: Discourse complexity indices;E3S Web of Conferences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3