Estimating the Reduction in Future Fleet-Level CO2 Emissions From Sustainable Aviation Fuel

Author:

Jain Samarth,Chao Hsun,Mane Muharrem,Crossley William A.,DeLaurentis Daniel A.

Abstract

With rising concerns over commercial aviation’s contribution to global carbon emissions, the aviation industry faces tremendous pressure to adopt advanced solutions for reducing its share of CO2 emissions. One near-term potential solution to mitigate this global emissions situation is to operate existing aircraft with sustainable aviation fuel (SAF); this solution requires almost no modification to current aircraft, making it the “quickest” approach to reduce aviation carbon emissions, albeit the actual impact will be determined by the degree to which airlines adopt and use SAF, the ticket price impact of SAF, and the future growth of travel demand. This article presents results that estimate the expected fleet-wide emissions of future airline operations using SAF considering various projected traveler demand and biofuel penetration/utilization levels. The work demonstrates an approach to make these predictions by modeling the behavior of a profit-seeking airline using the Fleet-Level Environmental Evaluation Tool (FLEET). Considering five future SAF scenarios and two future passenger demand projection scenarios, FLEET estimates future fleet-level CO2 emissions, showcasing the possible upper and lower bounds on future aviation emissions when SAF is introduced for use in airline fleets. Results show that the future fleet-level CO2 emissions for all scenarios with SAF are lower than the baseline scenario with no SAF, for all demand projection scenarios. The passenger demand served and the trips flown for a given SAF scenario depends on the SAF price and the biofuel penetration levels. This shows that even if airlines serve a higher passenger demand for some future scenarios, the carbon emissions could still be lower than the current baseline scenario where airlines only use conventional jet fuel.

Funder

Purdue University

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference58 articles.

1. Alternative Jet Fuel Production Facilities Status. Commercial Aviation Alternative Fuels Initiative (CAAFI)2018

2. The Potential Impacts of Emissions Trading Scheme and Biofuel Options to Carbon Emissions of U.S. Airlines;Chao;Energy Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3