An approximate dynamic programming method for unit-based small hydropower scheduling

Author:

Ji Yueyang,Wei Hua

Abstract

Hydropower will become an important power source of China’s power grids oriented to carbon neutral. In order to fully exploit the potential of water resources and achieve low-carbon operation, this paper proposes an approximate dynamic programming (ADP) algorithm for the unit-based short-term small hydropower scheduling (STSHS) framework considering the hydro unit commitment, which can accurately capture the physical and operational characteristics of individual units. Both the non-convex and non-linearization characteristics of the original STSHS model are retained without any linearization to accurately describe the hydropower production function and head effect, especially the dependence between the net head and the water volume in the reservoir, thereby avoiding loss of the actual optimal solution due to the large error introduced by the linearization process. An approximate value function of the original problem is formulated via the searching table model and approximate policy value iteration process to address the “curse of dimensionally” in traditional dynamic programming, which provides an approximate optimal strategy for the STSHS by considering both algorithm accuracy and computational efficiency. The model is then tested with a real-world instance of a hydropower plant with three identical units to demonstrate the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Guangxi Innovation-Driven Development Project

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3