A decision-making method for reservoir operation schemes based on deep learning and whale optimization algorithm

Author:

Hu Qiang,Hu He-xuan,Lin Zhen-zhou,Chen Zhi-hao,Zhang Ye

Abstract

Reservoir operation is an important part of basin water resources management. The rational use of reservoir operation scheme can not only enhance the capacity of flood control and disaster reduction in the basin, but also improve the efficiency of water use and give full play to the comprehensive role the reservoir. The conventional decision-making method of reservoir operation scheme is computationally large, subjectivity and difficult to capture the nonlinear relationship. To solve these problems, this paper proposes a reservoir operation scheme decision-making model IWGAN-IWOA-CNN based on artificial intelligence and deep learning technology. In view of the lack of data in the original reservoir operation scheme and the limited improvement of data characteristics by the traditional data augmentation algorithm, an improved generative adversarial network algorithm (IWGAN) is proposed. IWGAN uses the loss function which integrates Wasserstein distance, gradient penalty and difference item, and dynamically adds random noise in the process of model training. The whale optimization algorithm is improved by introducing Logistic chaotic mapping to initialize population, non-linear convergence factor and adaptive weights, and Levy flight perturbation strategy. The improved whale optimization algorithm (IWOA) is used to optimize hyperparameters of convolutional neural networks (CNN), so as to obtain the best parameters for model prediction. The experimental results show that the data generated by IWGAN has certain representation ability and high quality; IWOA has faster convergence speed, higher convergence accuracy and better stability; IWGAN-IWOA-CNN model has higher prediction accuracy and reliability of scheme selection.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Plant Science

Reference65 articles.

1. Review on the development of mining method selection to identify new techniques using a cascade-forward backpropagation neural network;Abdelrasoul;Adv. Civ Eng.,2022

2. Model check by kernel methods under weak moment conditions;Ahmad;Comput. Stat. Data Anal.,2001

3. Evolving support vector machines using whale optimization algorithm for spam profiles detection on online social networks in different lingual contexts;Al-Zoubi;Knowl. Based Syst.,2018

4. Towards principled methods for training generative adversarial networks;Arjovsky;Stat. (Int Stat. Inst),2017

5. ArjovskyM. ChintalaS. BottouL. Wasserstein gan2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3