Estimation of Lithium-Ion Battery SOC Model Based on AGA-FOUKF Algorithm

Author:

Fang Chao,Jin Zhiyang,Wu Jingjin,Liu Chenguang

Abstract

Aiming at the state estimation error caused by inaccurate battery model parameter estimation, a model-based state of charge (SOC) estimation method of lithium-ion battery is proposed. This method is derived from parameter identification using an adaptive genetic algorithm (AGA) and state estimation using fractional-order unscented Kalman filter (FOUKF). First, the fractional-order model is proposed to simulate the characteristics of lithium-ion batteries. Second, to tackle the problem of fixed values of probabilities of crossover and mutation in the genetic algorithm (GA) in model parameter identification, an AGA has been proposed. Then, the FOUKF method is used to assess battery SOC. For the data redundancy problem caused by the fractional-order algorithm, a time window is set to enhance the computational efficiency of the fractional-order operator. Finally, the experimental results show that the developed AGA-FOUKF algorithm can increase the correctness of SOC estimation.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3