Online estimation of lithium battery SOC based on fractional order FOUKF‐FOMIUKF algorithm with multiple time scales

Author:

Xing Likun1,Ren Hengqi1ORCID,Luo Wenfei1,Zhang Zhenyun2,Song Yangwanhao1

Affiliation:

1. College of Electrical and Information Engineering Anhui University of Science and Technology Huainan China

2. School of Advanced Manufacturing Engineering Hefei University Hefei China

Abstract

AbstractAiming at the matter of poor precision in predicting the charge of lithium battery by applying conventional integer‐order models and offline parameter identification, this paper proposes a joint fractional‐order multi‐innovations unscented Kalman filter (FOUKF‐FOMIUKF) algorithm for predicting the cells' state of charge (SOC) online and uses the theory of singular‐value decomposition to tackle the issue of failure of the traceless transformation. Initially, the circuitry model of fractional order is built. The parameters of the model are recognized online by fractional‐order unscented Kalman filtering (FOUKF), and the obtained parameters are then transmitted to the method known as the fractional order multi‐innovations unscented Kalman filter (FOMIUKF) to calculate the SOC of the cell. The algorithm was validated under four working conditions such as FUDS (US Federal Urban Driving Distance), BJDST (Beijing Dynamic Stress Test), DST (Dynamic Stress Test), and US06 (Highway Driving Distance Test), respectively, and compared with the FOMIUKF, MIUKF, and FOUKF algorithms for offline identification. The conclusions demonstrate that the SOC estimated by the FOUKF‐FOMIUKF method is controlled within 0.5% of the mean absolute error under the four conditions and the root‐mean‐square error is controlled within 0.8%. It is not difficult to find that the FOUKF‐FOMIUKF algorithm estimates SOC with higher accuracy and robustness.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3