A probabilistic track model for tropical cyclone risk assessment using multitask learning

Author:

Jian Zhou,Liu Xuan,Zhao Tianyang

Abstract

Tropical cyclone (TC) track forecasting is critical for wind risk assessment. This work proposes a novel probabilistic TC track forecasting model based on mixture density network (MDN) and multitask learning (MTL). The existing NN-based probabilistic TC track prediction models focus on directly modeling the distribution of the future TC positions. Multitask learning has been shown to boost the performance of single tasks when the tasks are relevant. This work divides the probabilistic track prediction task into two sub-tasks: a deterministic prediction of the future TC position and a probabilistic prediction of the residual between the deterministic prediction and the actual TC location. The MDN is employed to realize the probabilistic prediction task. Since the target values of the MDN in this work are the residuals, which depend on the prediction result of the deterministic task, a novel training method is developed to train the MTL model properly. The proposed model is tested against statistical and other learning-based models on historical TC data. The results show that the proposed model outperforms other models in making probabilistic predictions. This approach advances TC track forecasting by integrating MDN and MTL, showing promise in enhancing probabilistic predictions and improving disaster preparedness.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference41 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3