Scenario of carbon dioxide (CO2) emission peaking and reduction path implication in five northwestern provinces of China by the low emissions analysis platform (LEAP) model

Author:

Zhang Zhenxu,Jia Junsong,Guo Yali,Wu Bo,Chen Chundi

Abstract

Achieving global peaking of carbon dioxide (CO2) emissions as early as possible is a common goal for all countries. However, CO2 emissions in the northwest China still show a rapid growth trend. Thus, we used the Low Emissions Analysis Platform (LEAP) model to build three scenarios to investigate the peak of CO2 emissions and reduction pathways in five northwestern provinces of China. The results show that: 1) the CO2 emissions of five northwestern provinces under the baseline, the policy, and the green scenarios will peak in 2035 (1663.46 × 106 tonnes), 2031 (1405.00 × 106 tonnes), and 2027 (1273.96 × 106 tonnes), respectively. 2) The CO2 emissions of all provinces, except Qinghai, will not peak before 2030 in the baseline scenario. Under the policy and green scenarios, each province will achieve the peak of CO2 emissions by 2030. 3) The CO2 emissions from agriculture, transportation, and other sectors will peak before 2030 under the baseline scenario. The CO2 emissions from construction will peak before 2030 in policy scenario. The industry and commerce will peak before 2030 in green scenario. 4) The emission reduction effect indicates that CO2 emissions from 2020 to 2040 will be reduced by 4137.70 × 106 tonnes in the policy scenario and 7201.46 × 106 tonnes in the green scenario. The industrial coal and thermal power are the sectors with the greatest potential to reduce CO2 emissions. Accelerating the restructuring of industries and energy structures and improving technologies to reduce energy intensity can promote the achievement of the peak in CO2 emissions by 2030.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3