Peaking Industrial CO2 Emission in a Typical Heavy Industrial Region: From Multi-Industry and Multi-Energy Type Perspectives

Author:

Duan Haiyan,Dong Xize,Xie Pinlei,Chen Siyan,Qin Baoyang,Dong Zijia,Yang WeiORCID

Abstract

Peaking industrial carbon dioxide (CO2) emissions is critical for China to achieve its CO2 peaking target by 2030 since industrial sector is a major contributor to CO2 emissions. Heavy industrial regions consume plenty of fossil fuels and emit a large amount of CO2 emissions, which also have huge CO2 emissions reduction potential. It is significant to accurately forecast CO2 emission peak of industrial sector in heavy industrial regions from multi-industry and multi-energy type perspectives. This study incorporates 41 industries and 16 types of energy into the Long-Range Energy Alternatives Planning System (LEAP) model to predict the CO2 emission peak of the industrial sector in Jilin Province, a typical heavy industrial region. Four scenarios including business-as-usual scenario (BAU), energy-saving scenario (ESS), energy-saving and low-carbon scenario (ELS) and low-carbon scenario (LCS) are set for simulating the future CO2 emission trends during 2018–2050. The method of variable control is utilized to explore the degree and the direction of influencing factors of CO2 emission in four scenarios. The results indicate that the peak value of CO2 emission in the four scenarios are 165.65 million tons (Mt), 156.80 Mt, 128.16 Mt, and 114.17 Mt in 2040, 2040, 2030 and 2020, respectively. Taking ELS as an example, the larger energy-intensive industries such as ferrous metal smelting will peak CO2 emission in 2025, and low energy industries such as automobile manufacturing will continue to develop rapidly. The influence degree of the four factors is as follows: industrial added value (1.27) > industrial structure (1.19) > energy intensity of each industry (1.12) > energy consumption types of each industry (1.02). Among the four factors, industrial value added is a positive factor for CO2 emission, and the rest are inhibitory ones. The study provides a reference for developing industrial CO2 emission reduction policies from multi-industry and multi-energy type perspectives in heavy industrial regions of developing countries.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3