Techno-economic analysis of the distribution system with integration of distributed generators and electric vehicles

Author:

Golla Naresh Kumar,Dharavat Nagaraju,Sudabattula Suresh Kumar,Velamuri Suresh,Kantipudi M. V. V. Prasad,Kotb Hossam,Shouran Mokhtar,Alenezi Mohammed

Abstract

Electric vehicles (EVs) have become a feasible alternative to conventional vehicles due to their technical and environmental benefits. The rapid penetration of EVs might cause a significant impact on the distribution system (DS) due to the adverse effects of charging the EVs and grid integration technologies. In order to compensate for an additional EV load to the existing load demand on the DS, the distributed generators (DGs) are integrated into the grid system. Due to the stochastic nature of the DGs and EV load, the integration of DGs alone with the DS can minimize the power losses and increase the voltage level but not to the extent that might not improve the system stability. Here, the EV that acts as a load in the grid-to-vehicle (G2V) mode during charging can act as an energy source with its bidirectional mode of operation as vehicle-to-grid (V2G) while in the discharging mode. V2G is a novel resource for energy storage and provision of high and low regulations. The article proposes a smart charging model of EVs, estimates the off-load and peak load times over a period of time, and allocates charging and discharging based on the constraints of the state of charge (SoC), power, and intermittent load demand. A standardized IEEE 33-node DS integrated with an EV charging station (EVCS) and DGs is used to reduce the losses and improve the voltage profile of the proposed system. Simulation results are carried out for various possible cases to assess the effective utilization of V2G for stable operation of the DS. The cost–benefit analysis (CBA) is also determined for the G2V and V2G modes of operation for a 24-h horizon.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference40 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3