Optimizing electric vehicle paths to charging stations using parallel greylag goose algorithm and Restricted Boltzmann Machines

Author:

Alharbi Amal H.,Khafaga Doaa Sami,El-kenawy El-Sayed M.,Eid Marwa M.,Ibrahim Abdelhameed,Abualigah Laith,Khodadadi Nima,Abdelhamid Abdelaziz A.

Abstract

As the number of individuals who drive electric vehicles increases, it is becoming increasingly important to ensure that charging infrastructure is both dependable and conveniently accessible. Methodology: In this paper, a recommendation system is proposed with the purpose of assisting users of electric vehicles in locating charging stations that are closer to them, improving the charging experience, and lowering range anxiety. The proposed method is based on restricted Boltzmann machine learning to collect and evaluate real-time data on a variety of aspects, including the availability of charging stations and historical patterns of consumption. To optimize the parameters of the restricted Boltzmann machine, a new optimization algorithm is proposed and referred to as parallel greylag goose (PGGO) algorithm. The recommendation algorithm takes into consideration a variety of user preferences. These preferences include charging speed, cost, network compatibility, amenities, and proximity to the user’s present location. By addressing these preferences, the proposed approach reduces the amount of irritation experienced by users, improves charging performance, and increases customer satisfaction. Results: The findings demonstrate that the method is effective in recommending charging stations that are close to drivers of electric vehicles. On the other hand, the Wilcoxon rank-sum and Analysis of Variance tests are utilized in this work to investigate the statistical significance of the proposed parallel greylag goose optimization method and restricted Boltzmann machine model. The proposed methodology could achieve a recommendation accuracy of 99% when tested on the adopted dataset. Conclusion: Based on the achieved results, the proposed method is effective in recommending systems for the best charging stations for electric vehicles.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3