Low temperature ensures FeS2 cathode a superior cycling stability in Li7P3S11-based all-solid-state lithium batteries

Author:

Wang Ru,Wu Zhongkai,Yu Chuang,Wei Chaochao,Peng Linfeng,Wang Liping,Cheng Shijie,Xie Jia

Abstract

All-solid-state lithium sulfide batteries exhibit great potential as next-generation energy storage devices due to their low cost and high energy density. However, the poor conductivity of the solid electrolytes and the low electronic conductivity of sulfur limit their development. In this work, the highly conductive Li7P3S11 glass-ceramic solid electrolyte with room temperature conductivity of 1.27 mS cm−1 is synthesized and combined with the FeS2 cathode and Li-In anode to fabricate FeS2/Li7P3S11/Li-In all-solid-state Li-S battery. The assembled battery delivers high initial discharge capacities of 620.8, 866.4 mAh g−1, and 364.8 mAh g−1 at 0.1C under room temperature, 60°C and 0°C, respectively. It shows a discharge capacity of 284.8 mAh g−1 with a capacity retention of 52.4% after 80 cycles at room temperature. When the operating temperature rises to 60°C, this battery suffers a fast decay of capacity in 40 cycles. However, this battery sustains a high discharge capacity of 256.6 mAh g−1 with a capacity retention of 87.9% after 100 cycles under 0°C, smaller volume expansion of ASSBs at 0°C keep the solid/solid contact between the electrolyte particles, thus resulting in better electrochemical performances. EIS and in situ pressure characterizations further verify that the differences of electrochemical performances are associated with the volume variations caused by the temperature effects. This work provides a guideline for designing all-solid-state Li-S which is workable in a wide temperature range.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3