Hybrid Photovoltaic-Wind Microgrid With Battery Storage for Rural Electrification: A Case Study in Perú

Author:

Canziani Franco,Vargas Raúl,Gastelo-Roque José A.

Abstract

Microgrids are autonomous systems that generate, distribute, store, and manage energy. This type of energy solution has the potential to supply energy to remote communities since they can integrate solar, wind, and back-up diesel generation. These systems are potentially beneficial in Peru, where there are approximately 1.5 million people without access to electricity. This paper studies the technical aspects of the implementation, operation, and social impact of a hybrid microgrid installed in Laguna Grande, Ica, Peru, a rural fishing community composed of about 35 families who have lived in this remote location for more than 40 years without access to electricity. The design of the microgrid comprised three main stages: assessment, sizing, and social management. According to resource assessment, this location has a very high wind potential with an average of 8 m/s and annual average irradiation of 6 kWh/m2/day. The microgrid was designed based on interviews with members of the community on energy use, social-economic aspects, and factors such as expected growth and available funds. The construction followed a participatory approach, involving the community in specific stages of the project. This hybrid microgrid is composed of a 6 kWp photovoltaic system and two wind turbines of 3 kW each. It has two coupled 4 kW inverters that deliver power to a 230 V AC distribution line to which all the community loads are connected. Energy is stored using a VRLA 800 Ah, 48 V battery bank, which is designed to work at 50% DOD. The installed microgrid has proven very effective in supplying the average daily demand of 23 kWh at an almost steady power of 1–1.2 kW. During almost 2 years of monitoring, it has presented a 10% loss of load due to peak increases in demand, technical problems, and occasional low solar and wind resources. PV/wind integration is very important since approximately 60% of the energy demand is nocturnal. The CAPEX of the project reached USD 36,000.00, obtaining a cost of energy levelized cost of energy of 0.267 USD per kWh. The project has a useful life of 20 years, with battery renewal every 3 years and wind turbines and electronics every 10.

Funder

Inter-American Development Bank

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3