Identification and Analysis of Technical Impacts in the Electric Power System Due to the Integration of Microgrids

Author:

Escobar-Orozco Luisa Fernanda1ORCID,Gómez-Luna Eduardo1ORCID,Marlés-Sáenz Eduardo1ORCID

Affiliation:

1. GRALTA Research Group, Electrical and Electronic Department, Universidad del Valle, Cali 760042, Colombia

Abstract

In a modern and technological world that has a great demand for energy, a versatile energy market, and a renewed electric infrastructure capable of expanding the electric power system under the premise of universal access to electricity, that seeks to minimize the effects of climate change, and that requires an improvement in its reliability, security, and resilience, microgrids are born as one of the systems that have the potential to supply each of these requirements in order to guarantee an adequate decarbonization, decentralization, digitalization, diversification, and democratization of the future grid. However, the integration of microgrids into the electric power system will generate impacts that are currently under study. This paper identifies and analyzes the technical impacts in the electric power system due to the implementation of microgrids, based on what has been recognized in the literature, so that those who have purposes of installation, creation, innovation, and research of microgrids, such as grid operators, technology providers, companies, and researchers, can establish criteria and indicators through which the feasibility of projects involving microgrids can be determined. The concept, importance, and characteristics of microgrids are given, along with a technical justification of the impacts. In addition, technical impacts on some study cases of real microgrids around the globe are identified. Finally, an analysis of the identified technical impacts is offered, and conclusions are drawn.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference100 articles.

1. International Energy Agency (IEA) (2021). Global Energy Review: CO2 Emissions in 2021—Analysis, IEA. Available online: https://www.iea.org/reports/global-energy-review-co2-emissions-in-2021-2.

2. United Nations (2019). Objetivo 13: Adoptar Medidas Urgentes para Combatir el Cambio Climático y sus Efectos, United Nations.

3. Congreso de Colombia (2014). LEY 1715. Integración de Las Energías Renovables No Convencionales Al Sistema Energético Nacional.

4. ONU (2021). Universal Access to Electricity: Electrification Modelling Results, ONU.

5. Methodology for Technical Feasibility Analysis in the Installation of Microgrids;Carvajal;J. Eng. Sci. Technol. Rev.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3