Optimizing Microalgal Biomass Feedstock Selection for Nanocatalytic Conversion Into Biofuel Clean Energy, Using Fuzzy Multi-Criteria Decision Making Processes

Author:

Kokkinos Konstantinos,Karayannis Vayos,Moustakas Konstantinos

Abstract

Biofuel production from microalgae non-food feedstock is a challenge for strengthening Green energy nowadays. Reviewing the current technology, there is still reluctance in investing towards the production of new algal strains that yield more oil and maximize capital gains. In the current work, the microalgal feedstock selection problem is investigated for increased lipid production and nano-catalytic conversion into clean biofuel. For that purpose, a variety of Fuzzy Multi-Criteria Decision Making processes and a multitude of Optimization criteria spanning to technological, environmental, economic, and social aspects are used. The strains selected for the analysis areChlorellasp.,Schizochytriumsp.,Spirulinasp., andNannochloropsissp. The methods applied are fuzzy analytic hierarchy process, FTOPSIS (fuzzy technique for the order of preference to the ideal solution), and FCM (fuzzy cognitive mapping). Pairwise comparison matrices were calculated using data from extensive literature review. All aforementioned fuzzy logic methodologies are proven superior to their numeric equivalent under uncertain factors that affect the decision making, such as cost, policy implications, and also geographical and seasonal variation. A major finding is that the most dominant factor in the strain selection is the high lipid content. Moreover, the results indicate that theChlorella Vulgarismicroalgae is ranked as the best choice by the FTOPSIS method followed by theNannochloropsisstrain, andSpirulina Platensiswas found to be the last in performance.The best and worst case scenario run with FCM experimentally verify this choice indicating thatChlorella Vulgarisfollows this trend of selection mostly with the technological and the economic criteria for both the sigmoid and the hyperbolic tangent deep-learning functions used.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3