Investigation of dust pollutants and the impact of suspended particulate matter on the performance of photovoltaic systems

Author:

Tamoor Muhammad,Hussain Muhammad Imtiaz,Bhatti Abdul Rauf,Miran Sajjad,Arif Waseem,Kiren Tayybah,Lee Gwi Hyun

Abstract

The purpose of this study is to investigate the potential of airborne particulate matter (PM10 and PM2.5) and its impact on the performance of the photovoltaic (PV) system installed in the Sargodha region, being affected by the crushing activities in the hills. More than 100 stone crushers are operating in this region. Four stations within this region are selected for taking samples during the summer and winter seasons. Glass–fiber papers are used as a collection medium for particulate matter (PM) in a high-volume sampler. The concentration of PM is found above the permissible limit at all selected sites. The chemical composition, concentration, and the formation of particulate matter (PM10 and PM2.5) layers on the surface of the photovoltaic module varies significantly depending on the site’s location and time. The accumulation of PM layers on the PV module surface is one of the operating environmental factors that cause significant reduction in PV system performance. Consequently, it leads to power loss, reduction of service life, and increase in module temperature. For the PV system’s performance analysis, two PV systems are installed at the site, having higher PM concentration. One system is cleaned regularly, while the other remains dusty. The data of both PV systems are measured and compared for 4 months (2 months for the summer season and 2 months for the winter season). It is found that when the level of suspended particulate matter (PM10 and PM2.5) increases, the energy generation of the dusty PV system (compared to the cleaned one) is reduced by 7.48% in May, 7.342% in June, 10.68% in December, and 8.03% in January. Based on the obtained results, it is recommended that the negative impact of PM on the performance of the PV system should be considered carefully during the decision-making process of setting solar energy generation targets in the regions with a high level of particulate matter.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3