Optimal sizing and technical assessment of a hybrid renewable energy solution for off-grid community center power

Author:

Tamoor Muhammad,Bhatti Abdul Rauf,Hussain Muhammad Imtiaz,Miran Sajjad,Kiren Tayybah,Ali Asma,Lee Gwi Hyun

Abstract

Decentralized energy generation systems based on renewable sources have significant potential to assist in the sustainable development of developing countries. The small-scale integration of hybrid renewable energy systems in off-grid communities has not been thoroughly researched. The primary objective is to develop a preliminary design for a PV/biogas hybrid system that can meet the energy needs of an off-grid community center. A survey was conducted to calculate the energy demands of an off-grid community center and a hybrid renewable system has been designed to supply the electricity. The optimum designed system is evaluated by the PVSYST simulation software and SuperPro Designer software. The annual production of the PV system is 34428 kWh/year, specific production is 1118 kWh/kWp/year, and the performance ratio is 81.72%. All the factors that contribute to energy loss are considered in designing a PV system. The average operating efficiency of the inverter is 92.6%, and global inverter losses are 2752.4 kWh. The biogas simulation findings show an adequate match with the composition of conventional biogas and contains 89.64% methane and 5.99% carbon dioxide content. Two sensitivity analyses of biogas based on hydraulic retention time and moisture content have been performed. Measurements readings of hourly data are used to analyse the performance of PV, biogas system as well as the hybrid system performance. At day time, the maximum power generation of the hybrid PV/Biogas and the maximum load demand of the community at that time are 25.2 kW and 24.31 kW, respectively. At night time, the maximum power generation of the hybrid system and the maximum load demand are 9 kW and 8.3 kW, respectively. The power factor (PF) of the system fluctuates between 0.92 and 0.98 and the frequency of the system is constant at 50 HZ.

Funder

National Research Foundation of Korea

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference67 articles.

1. Experimental and simulation analysis of biogas production from beverage wastewater sludge for electricity generation;Admasu;Sci. Rep.,2022

2. Biogas as future prospect for energy dependency and rural prosperity in India: statistical analysis and economic impact;Aggarwal,2009

3. Small-scale hybrid photovoltaic-biomass systems feasibility analysis for higher education buildings;Alfonso-Solar;Sustainability,2020

4. Life cycle energy and cost analysis of small scale biogas plant and solar PV system in rural areas of Bangladesh;Ali;Energy Procedia,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3