Challenges and opportunities for the built environment in a carbon-constrained world for the next 100 years and beyond

Author:

Park Ah-Hyung Alissa,Williams Jonah M.,Friedmann Julio,Hanson David,Kawashima Shiho,Sick Volker,Taha Mahmoud Reda,Wilcox Jennifer

Abstract

Today, the built environment, including infrastructure for tunnels, bridges, highways, subways, railroads, harbors, buildings and airports, is responsible for a significant portion of the energy consumption, natural resource utilization, waste generation as well as CO2 and other environmentally harmful emissions in the United States and around the world. There is no silver bullet solution to achieve the ambitious goal of zero carbon buildings and a city infrastructure with significantly reduced CO2 emissions. Thus, multifaceted solutions should be developed. Another challenge associated with the built environment is aging and a large economic burden to upgrade and maintain the outdated infrastructure. The current status of the U.S. built environment is far below sustainable condition. Rapidly deteriorating infrastructure that must be replaced provides us with the unique opportunity to rethink where and how we should live in the future. In addition, current challenges related to economic and societal inequality in the United States and other global communities also force us to re-evaluate how humanity is connected and how we share resources for a sustainable and healthy future while keeping the Earth safe. The engineering solutions for our future built environment include, but are not limited to, the design and synthesis of new infrastructure materials with low carbon intensity, the development of new manufacturing options and technologies, and the integration of innovative functionalities into building envelopes.

Publisher

Frontiers Media SA

Reference27 articles.

1. A comprehensive assessment of America’s infrastructure2021

2. Green steel production: how G7 countries can help change the global landscape;Gerres;LeadIt,2021

3. Local laws of the city of New York for the year 20192019

4. Utilization of CO2 in direct aqueous carbonation of concrete fines generated from aggregate recycling: influences of the solid–liquid ratio and CO2 concentration;Ho;J. Clean. Prod.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3