Optimal Dispatching Strategy of Active Distribution Network for Promoting Local Consumption of Renewable Energy

Author:

Xie Hua,Wang Wei,Wang Weixing,Tian Lulu

Abstract

Large-scale renewable energy sources (RESs) have been integrated into the active distribution network (ADN). For promoting the local consumption of RESs within ADN, an optimal dispatching strategy was proposed with two-stage hierarchical energy management framework. On the spatial boundary, a two-layer energy management framework was designed with the local optimization layer and the global optimization layer. The local optimization layer was for optimal power flow in the branch feeder with the objective functions of minimizing operation costs and maximizing the consumption of RESs. The global optimization layer was for optimal power flow in the main feeder with the objective functions of minimizing power loss and the voltage deviation of nodes. On the time scale, two-stage optimal dispatching models were established, including the day-ahead optimal models and intra-day optimal models. The day-ahead optimal models identified the operation status of the controllable units, and then the intra-day optimal models were updated with the ultra-short-term forecast results. A risk indicator was introduced to quantify the uncertainty of RES, and a non-dominated sorting genetic algorithm with elite strategy was adopted to solve the multi-objective nonlinear programming problem. An actual project in northern China was used as the testing system. The results of case studies verify that the proposed strategy can effectively realize the maximum local consumption of RESs and support the economic operation of ADN.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3