Distributed Energy Management for Networked Microgrids with Hardware-in-the-Loop Validation

Author:

Liu Guodong1ORCID,Ferrari Maximiliano F.1,Ollis Thomas B.1ORCID,Sundararajan Aditya1,Olama Mohammed2ORCID,Chen Yang3

Affiliation:

1. Electrification and Energy Infrastructures Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

2. Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

3. Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA

Abstract

For the cooperative operation of networked microgrids, a distributed energy management considering network operational objectives and constraints is proposed in this work. Considering various ownership and privacy requirements of microgrids, utility directly interfaced distributed energy resources (DERs) and demand response, a distributed optimization is proposed for obtaining optimal network operational objectives with constraints satisfied through iteratively updated price signals. The alternating direction method of multipliers (ADMM) algorithm is utilized to solve the formulated distributed optimization. The proposed distributed energy management provides microgrids, utility-directly interfaced DERs and responsive demands the opportunity of contributing to better network operational objectives while preserving their privacy and autonomy. Results of numerical simulation using a networked microgrids system consisting of several microgrids, utility directly interfaced DERs and responsive demands validate the soundness and accuracy of the proposed distributed energy management. The proposed method is further tested on a practical two-microgrid system located in Adjuntas, Puerto Rico, and the applicability of the proposed strategy is validated through hardware-in-the-loop (HIL) testing.

Funder

U.S. Department of Energys Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3