Numerical Analysis on the Performance of High Concentration Photovoltaic Systems Under the Nonuniform Energy Flow Density

Author:

Chen Haifei,Wang Yunjie,Ding Yuwei,Cai Baorui,Yang Jie

Abstract

Photovoltaic panels can directly convert solar energy into electricity, but temperature will have a certain impact on the efficiency of photovoltaic cells. Especially under the condition of nonuniform energy flow density of high-power concentration, it is of great significance to maintain the temperature uniformity of cells. Therefore, based on the radiation under nonuniform heat flux density, four heat exchangers were proposed: single-channel serpentine flow, multi-channel flat plate, full jet, and single-jet nozzle. Taking into account the uniformity of the cell temperature, the single-jet nozzle and single-channel serpentine flow can better maintain the uniformity of the temperature field compared with other heat exchangers. Especially under high-concentration energy flow density, considering the quality of heat and electricity, the performance of the four-jet nozzles is the best from the perspective of exergy efficiency. Under the condition of four-jet nozzles, the electrical efficiency and thermal efficiency of the cell can be maintained at about 29 and 62.5%, respectively, and the exergy efficiency of the system can reach 31%.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3