Energy Simulation and Parametric Analysis of Water Cooled Thermal Photovoltaic Systems: Energy and Exergy Analysis of Photovoltaic Systems

Author:

Candra OrizaORCID,Kumar Narukullapati BharathORCID,Dwijendra Ngakan Ketut AcwinORCID,Patra IndrajitORCID,Majdi AliORCID,Rahardja UntungORCID,Kosov MikhailORCID,Guerrero John William GrimaldoORCID,Sivaraman RamaswamyORCID

Abstract

It is generally agreed that solar energy, which can be converted into usable electricity by means of solar panels, is one of the most important renewable energy sources. An energy and exergy study of these panels is the first step in developing this technology. This will provide a fair standard by which solar panel efficiency can be evaluated. In this study, the MATLAB tool was used to find the answers to the math problems that describe this system. The system’s efficiency has been calculated using the modeled data created in MATLAB. When solving equations, the initial value of the independent system parameters is fed into the computer in accordance with the algorithm of the program. A simulation and a parametric analysis of a thermal PV system with a sheet and spiral tube configuration have been completed. Simulations based on a numerical model have been run to determine where precisely the sheet and helical tubes should be placed in a PV/T system configured for cold water. Since then, the MATLAB code for the proposed model has been developed, and it agrees well with the experimental data. There is an RMSE of 0.94 for this model. The results indicate that the modeled sample achieves a thermal efficiency of between 43% and 52% and an electrical efficiency of between 11% and 11.5%.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3