A sustainable approach for demand side management considering demand response and renewable energy in smart grids

Author:

Ahmad Syed Yasir,Hafeez Ghulam,Aurangzeb Khursheed,Rehman Khalid,Khan Taimoor Ahmad,Alhussein Musaed

Abstract

The development of smart grids has revolutionized modern energy markets, enabling users to participate in demand response (DR) programs and maintain a balance between power generation and demand. However, users’ decreased awareness poses a challenge in responding to signals from DR programs. To address this issue, energy management controllers (EMCs) have emerged as automated solutions for energy management problems using DR signals. This study introduces a novel hybrid algorithm called the hybrid genetic bacteria foraging optimization algorithm (HGBFOA), which combines the desirable features of the genetic algorithm (GA) and bacteria foraging optimization algorithm (BFOA) in its design and implementation. The proposed HGBFOA-based EMC effectively solves energy management problems for four categories of residential loads: time elastic, power elastic, critical, and hybrid. By leveraging the characteristics of GA and BFOA, the HGBFOA algorithm achieves an efficient appliance scheduling mechanism, reduced energy consumption, minimized peak-to-average ratio (PAR), cost optimization, and improved user comfort level. To evaluate the performance of HGBFOA, comparisons were made with other well-known algorithms, including the particle swarm optimization algorithm (PSO), GA, BFOA, and hybrid genetic particle optimization algorithm (HGPO). The results demonstrate that the HGBFOA algorithm outperforms existing algorithms in terms of scheduling, energy consumption, power costs, PAR, and user comfort.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3