Real-Time Energy Management and Load Scheduling with Renewable Energy Integration in Smart Grid

Author:

Albogamy Fahad R.,Khan Sajjad Ali,Hafeez GhulamORCID,Murawwat Sadia,Khan Sheraz,Haider Syed IrtazaORCID,Basit AbdulORCID,Thoben Klaus-DieterORCID

Abstract

With the smart grid development, the modern electricity market is reformatted, where residential consumers can actively participate in the demand response (DR) program to balance demand with generation. However, lack of user knowledge is a challenging issue in responding to DR incentive signals. Thus, an Energy Management Controller (EMC) emerged that automatically respond to DR signal and solve energy management problem. On this note, in this work, a hybrid algorithm of Enhanced Differential Evolution (EDE) and Genetic Algorithm (GA) is developed, namely EDGE. The EMC is programmed based with EDGE algorithm to automatically respond to DR signals to solve energy management problems via scheduling three types of household load: interruptible, non-interruptible, and hybrid. The EDGE algorithm has critical features of both algorithms (GA and EDE), enabling the EMC to generate an optimal schedule of household load to reduce energy expense, carbon emission, Peak to Average Ratio (PAR), and user discomfort. To validate the proposed EDGE algorithm, simulations are conducted compared to the existing algorithms like Binary Particle Swarm Optimization (BPSO), GA, Wind Driven Optimization (WDO), and EDE. Results illustrate that the proposed EDGE algorithm outperforms benchmark algorithms in energy expense minimization, carbon emission minimization, PAR alleviation, and user discomfort maximization.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3