Classification of Power Quality Disturbance Based on S-Transform and Convolution Neural Network

Author:

Li Jinsong,Liu Hao,Wang Dengke,Bi Tianshu

Abstract

The accurate classification of power quality disturbance (PQD) signals is of great significance for the establishment of a real-time monitoring system of modern power grids, ensuring the safe and stable operation of the power system and ensuring the electricity safety of users. Traditional power quality disturbance signal classification methods are susceptible to noise interference, feature selection, etc. In order to further improve the accuracy of power quality disturbance signal classification methods, this paper proposes a power quality disturbance classification method based on S-transform and Convolutional Neural Network (CNN). Firstly, S-transform is used to extract disturbance signals to obtain the time-frequency matrix with characteristics of the disturbance signals. As an extension of wavelet transform and Fourier transform, S-transform can avoid the disadvantages of difficult window function selection and fixed window width. At the same time, the feature extracted by S-transform has better noise immunity. Secondly, CNN is used to perform secondary feature extraction on the obtained high-dimensional time-frequency modulus matrix to reduce data dimensions and obtain the main features of the disturbance signal, then the main features extracted are classified by using the SoftMax classifier. Finally, after a series of simulation experiments, the results show that the proposed algorithm can accurately classify single disturbance signals with different signal-to-noise ratios and composite disturbance signals composed of single disturbance signals, and it also has good noise immunity. Compared with other classification methods, the algorithm proposed in this paper has better timeliness and higher accuracy, and it is an efficient and feasible power quality disturbance signal classification method.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference32 articles.

1. One-to-many Face Recognition with Bilinear CNNs;Chowdhury,2016

2. Convolutional Neural Networks in Image Understanding;Chang;Acta Automatica Sinica,2016

3. Classification for Power Quality Disturbance Based on Phase-Space Reconstruction and Convolution Neural Network;Chen;Dianli Xitong Baohu Yu Kongzhi/Power Syst. Prot. Control.,2018

4. Harmonic Analysis of Power Grid Based on FFT Algorithm;Deng,2020

5. Comparative Group THD Analysis of Power Quality Disturbances Using FFT and STFT;Dhoriyani,2020

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3