Local Distributed Node for Power Quality Event Detection Based on Multi-Sine Fitting Algorithm

Author:

Carní Domenico Luca1ORCID,Lamonaca Francesco1ORCID

Affiliation:

1. Department of Computer Engineering, Modeling, Electronics and Systems, University of Calabria, 87046 Rende, Italy

Abstract

The new power generation systems, the increasing number of equipment connected to the power grid, and the introduction of technologies such as the smart grid, underline the importance and complexity of the Power Quality (PQ) evaluation. In this scenario, an Automatic PQ Events Classifier (APQEC) that detects, segments, and classifies the anomaly in the power signal is needed for the timely intervention and maintenance of the grid. Due to the extension and complexity of the network, the number of points to be monitored is large, making the cost of the infrastructure unreasonable. To reduce the cost, a new architecture for an APQEC is proposed. This architecture is composed of several Locally Distributed Nodes (LDNs) and a Central Classification Unit (CCU). The LDNs are in charge of the acquisition, the detection of PQ events, and the segmentation of the power signal. Instead, the CCU receives the information from the nodes to classify the PQ events. A low-computational capability characterizes low-cost LDNs. For this reason, a suitable PQ event detection and segmentation method with low resource requirements is proposed. It is based on the use of a sliding observation window that establishes a reasonable time interval, which is also useful for signal classification and the multi-sine fitting algorithm to decompose the input signal in harmonic components. These components can be compared with established threshold values to detect if a PQ event occurs. Only in this case, the signal is sent to the CCU for the classification; otherwise, it is discarded. Numerical tests are performed to set the sliding window size and observe the behavior of the proposed method with the main PQ events presented in the literature, even when the SNR varies. Experimental results confirm the effectiveness of the proposal, highlighting the correspondence with numerical results and the reduced execution time when compared to FFT-based methods.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly Detection for Power Quality Analysis Using Smart Metering Systems;Sensors;2024-09-06

2. A Real Network Performance Analysis Testbed for Encrypted MQTT in DMS;2024 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv);2024-06-12

3. Safeguarding Sensitive Data in the Era of IoT: A Study on Security Protocols for Distributed Measurement Systems;2024 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv);2024-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3