Deep learning-based meta-learner strategy for electricity theft detection

Author:

Shehzad Faisal,Ullah Zahid,Alhussein Musaed,Aurangzeb Khursheed,Aslam Sheraz

Abstract

Electricity theft damages power grid infrastructure and is also responsible for huge revenue losses for electric utilities. Integrating smart meters in traditional power grids enables real-time monitoring and collection of consumers’ electricity consumption (EC) data. Based on the collected data, it is possible to identify the normal and malicious behavior of consumers by analyzing the data using machine learning (ML) and deep learning methods. This paper proposes a deep learning-based meta-learner model to distinguish between normal and malicious patterns in EC data. The proposed model consists of two stages. In Fold-0, the ML classifiers extract diverse knowledge and learns based on EC data. In Fold-1, a multilayer perceptron is used as a meta-learner, which takes the prediction results of Fold-0 classifiers as input, automatically learns non-linear relationships among them, and extracts hidden complicated features to classify normal and malicious behaviors. Therefore, the proposed model controls the overfitting problem and achieves high accuracy. Moreover, extensive experiments are conducted to compare its performance with boosting, bagging, standalone conventional ML classifiers, and baseline models published in top-tier outlets. The proposed model is evaluated using a real EC dataset, which is provided by the Energy Informatics Group in Pakistan. The model achieves 0.910 ROC-AUC and 0.988 PR-AUC values on the test dataset, which are higher than those of the compared models.

Funder

King Saud University

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3