Enhancing Smart City Functions through the Mitigation of Electricity Theft in Smart Grids: A Stacked Ensemble Method

Author:

Hashim MuhammadORCID,Khan LaiqORCID,Javaid NadeemORCID,Ullah ZahidORCID,Shaheen IfraORCID

Abstract

Smart grid is the primary stakeholder in smart cities integrated with modern technologies as the Internet of Things (IoT), smart healthcare systems, industrial IoT, renewable energy, energy communities, and the 6G network. Smart grids provide bidirectional power and information flow by integrating many IoT devices and software. These advanced IOTs and cyber layers introduced new types of vulnerabilities and could compromise the stability of smart grids. Some anomalous consumers leverage these vulnerabilities, launch theft attacks on the power system, and steal electricity to lower their electricity bills. The recent developments in numerous detection methods have been supported by cutting‐edge machine learning (ML) approaches. Even so, these recent developments are practically not robust enough because of the limitations of single ML approaches employed. This research introduced a stacked ensemble method for electricity theft detection (ETD) in a smart grid. The framework detects anomalous consumers in two stages; in the first stage, four powerful classifiers are stacked and detect suspicious activity, and the output of these consumers is fed to a single classifier for the second‐stage classification to get better results. Furthermore, we incorporate kernel principal component analysis (KPCA) and localized random affine shadow sampling (LoRAS) for feature engineering and data augmentation. We also perform comparative analysis using adaptive synthesis (ADASYN) and independent component analysis (ICA). The simulation findings reveal that the proposed model outperforms with 97% accuracy, 97% AUC score, and 98% precision.

Publisher

Wiley

Reference50 articles.

1. Development of an extended STIRPAT model to assess the driving factors of household carbon dioxide emissions in China

2. A review of regional energy internet in smart city from the perspective of energy community

3. smartgrid The relationship between smart grids and smart cities 2023 https://smartgrid.ieee.org/resources?cafid=0&id=223.

4. Cyber Security and Privacy Issues in Smart Grids

5. globenewswire Newswire distribution network and management 2023 https://www.newswire.com/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3