Evaluation and optimization of a novel cascade refrigeration system driven by waste heat

Author:

Zheng Weibo,Zhou Hongbin,Xiao Zhiyong,Sun Dong,Song Changshan,Zhang Xiaohan,Li Jianbo

Abstract

Direct discharge of waste heat from internal combustion engines (ICEs) is unfavorable for the efficient and clean fuel utilization. Here, a novel combined absorption-compression cascade refrigeration cycle is proposed to efficiently capture low-grade waste heat and supply cooling capacity for food freezing in vessels or refrigerated trucks. The intention of this work lies in: i) Comprehensively evaluating the performances of the proposed system; ii) Gaining the optimal operating conditions of the system. Aimed that, analysis models of energy, exergy, economy, and environment are set up to evaluate the sweeping performances. Further, multi-objective optimization is introduced to obtain the optimal operating parameters including evaporation and condensation temperature of the low-temperature stage, generation temperature and condensation temperature of the high-temperature stage, and cascade temperature differences. By applying multi-objective optimization, the coefficient of performance and exergy efficiency of the system are elevated from 1.283 to 1.547, and 0.222 to 0.246, respectively, the discharge amount of carbon dioxide are reduced from 71.40 to 59.57 tons year−1, and annual total cost are decreased from 16,028 to 15,055 $ year−1 compared to initial operating conditions.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3