Adaptive individual residential load forecasting based on deep learning and dynamic mirror descent

Author:

Han Fujia,Wang Xiaohui

Abstract

With a growing penetration of renewable energy generation in the modern power networks, it has become highly challenging for network operators to balance electricity supply and demand. Residential load forecasting nowadays plays an increasingly important role in this aspect and facilitates various interactions between power networks and electricity users. While numerous research works have been proposed targeting at aggregate residential load forecasting, only a few efforts have been made towards individual residential load forecasting. The issue of volatility of individual residential load has never been addressed in forecasting. Thus, to fill this gap, this paper presents a deep learning method empowered with dynamic mirror descent for adaptive individual residential load forecasting. The proposed method is evaluated on a real-life Irish residential load dataset, and the experimental results show that it improves the prediction accuracy by 9.1% and 11.6% in the aspects of RMSE and MAE respectively in comparison with a benchmark method.

Funder

State Grid Corporation of China

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Residential Electricity Consumption Prediction Method Based on Deep Learning and Federated Learning Under Cloud Edge Collaboration Architecture;International Journal of Gaming and Computer-Mediated Simulations;2024-02-07

2. Data Driven Electricity Theft Detection Based on Federated Learning;2023 IEEE 7th Conference on Energy Internet and Energy System Integration (EI2);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3