Mixed-integer second-order cone programming method for active distribution network

Author:

Wan Dai,Zhao Miao,Yi Zimu,Jiang Fei,Guo Qi,Zhou Qianfan

Abstract

Developing a novel type of power system is an important means of achieving the “dual carbon” goals of achieving peak carbon emissions and carbon neutrality in the near future. Given that the distribution network has access to a wide range of distributed and flexible resources, reasonably controlling large-scale and adjustable resources is a critical factor influencing the safe and stable operation of the active distribution network (ADN). In light of this, the authors of this study propose a mixed-integer second-order cone programming method for an active distribution network by considering the collaboration between distributed, flexible resources. First, Monte Carlo sampling is used to simulate the charging load of electric vehicles (EVs), and the auto regressive moving average (ARMA) and the scenario reduction algorithms (SRA) based on probability distance are used to generate scenarios of the outputs of distributed generation (DG). Second, we establish an economical, low-carbon model to optimize the operation of the active distribution network to reduce its operating costs and carbon emissions by considering the adjustable characteristics of the distributed and flexible resources, such as on-load tap changer (OLTC), devices for reactive power compensation, and EVs and electric energy storage equipment (EES). Then, the proposed model is transformed into a mixed-integer second-order cone programming (SOCP) model with a convex feasible domain by using second-order cone relaxation (SOCR), and is solved by using the CPLEX commercial solver. Finally, we performed an arithmetic analysis on the improved IEEE 33-node power distribution system, the results show that ADN’s day-to-day operating costs were reduced by 47.9% year-on-year, and carbon emissions were reduced by 75.2% year-on-year. The method proposed in this paper has significant effects in reducing the operating cost and carbon emissions of ADNs, as well as reducing the amplitude of ADN node voltages and branch currents.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3