Economic Scheduling Model of an Active Distribution Network Based on Chaotic Particle Swarm Optimization

Author:

Xu Yaxuan1,Liu Jianuo1,Cui Zhongqi1,Liu Ziying1,Dai Chenxu1,Zang Xiangzhen2,Ji Zhanlin13ORCID

Affiliation:

1. Hebei Key Laboratory of Industrial Intelligent Perception, North China University of Science and Technology, Tangshan 063210, China

2. Research Academy for Rural Revitalization of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China

3. College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China

Abstract

With the continuous increase in global energy demand and growing environmental awareness, the utilization of renewable energy has become a worldwide consensus. In order to address the challenges posed by the intermittent and unpredictable nature of renewable energy in distributed power distribution networks, as well as to improve the economic and operational stability of distribution systems, this paper proposes the establishment of an active distribution network capable of accommodating renewable energy. The objective is to enhance the efficiency of new energy utilization. This study investigates optimal scheduling models for energy storage technologies and economic-operation dispatching techniques in distributed power distribution networks. Additionally, it develops a comprehensive demand response model, with real-time pricing and incentive policies aiming to minimize load peak–valley differentials. The control mechanism incorporates time-of-use pricing and integrates a chaos particle swarm algorithm for a holistic approach to solution finding. By coordinating and optimizing the control of distributed power sources, energy storage systems, and flexible loads, the active distribution network achieves minimal operational costs while meeting demand-side power requirements, striving to smooth out load curves as much as possible. Case studies demonstrate significant enhancements during off-peak periods, with an approximately 60% increase in the load power overall elevation of load factors during regular periods, as well as a reduction in grid loads during evening peak hours, with a maximum decrease of nearly 65 kW. This approach mitigates grid operational pressures and user expense, effectively enhancing the stability and economic efficiency in distribution network operations.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3