Carbonaceous electrode materials for supercapacitor: Preparation and surface functionalization

Author:

Lv Yaokang,Wang Juncheng,Ji Dingwei,Li Jianhang,Zhao Suaisuai,Zhao Yingjian,Cai Zhiwei,He Xuehua,Sun Xiaofang

Abstract

Supercapacitors became more and more important recently in the area of energy storage and conversion. Their large power deliveries abilities, high stability and environmental friendliness characteristics draw tremendous attention in high-power applications such as public transit networks. Carbonaceous materials with unique surface and electrochemical properties were widely used in supercapacitors as electrode materials. This review focuses on the developments in supercapacitor electrodes made from carbonaceous materials recently, their working principle and evaluation parameters were summarized briefly. The preparation methods and electrochemical properties of different carbonaceous materials were compared and classified. It was found that the surface situation (e.g., porous structure, hydrophilic) of carbonaceous materials strongly affect the electrochemical performances of supercapacitor. So far, active carbons would be the most applicable carbonaceous electrode materials owing to their good chemical stability and conductivity, extensive accessibility inexpensiveness. But their energy densities still fall behind practical demands. Both theoretical calculations and experimental studies show that surface modification and doping of carbonaceous materials can not only optimize their pore size, structure, conductivity and surface properties, but also can introduce extra pseudocapacitance into these materials. Considering global environmental pollution and energy shortage problems nowadays, we sincerely suggested that future work should focus on domestic, medical and industrial wastes residues derived carbonaceous materials and scaled production process such as reactors and exhaust gas treatment.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3