Recent Advances in Biomass Waste Derived Carbon Materials for Supercapacitors: A Review

Author:

Chen Yarong1,Wang Xingyan12,Wang Xianyou2ORCID

Affiliation:

1. Department of Environmental Science and Engineering College of Environment and Resources Xiangtan University Xiangtan 411105 Hunan China

2. National Base for International Science & Technology Cooperation, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education Hunan Province Key Laboratory of Electrochemical Energy Storage and Conversion School of Chemistry Xiangtan University Xiangtan 411105 Hunan China

Abstract

As the core component of supercapacitors (SCs), the electrode material plays a decisive role in performance. Among electrode materials, carbon materials are the most widely used due to high porosity and specific surface area (SSA, 1000–3000 m2 g−1). Biomass carbon stands out in carbon materials because of its wide source, low cost, and less pollution. This work reviews the recent advances on carbon materials derived from biomass waste for SCs and explores the effects of different biomass sources including plant, animal, and aquatic organism waste on the performance of biomass waste‐derived carbon materials (BWDCs). Because of its high conductivity (1.25 × 103 ≈ 3 × 105 S m−1), power density (>10 kW kg−1), and extended cycle life (>10 000 cycles), BWDCs are advancing quickly in energy storage. It also discusses different methods and optimization pathways of BWDCs thoroughly. Finally, the challenges and future prospects for BWDCs are summarized. Overall, this critical will help researchers to gain a better understanding of source selection, structural classification, and research strategies for BWDCs, thereby promoting the application of BWDCs in electrochemistry and resource utilization.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3