Author:
Chen Wengang,He Hongying,Liu Jianguo,Yang Jinbiao,Zhang Ke,Luo Diansheng
Abstract
Solar photovoltaic power generation has the characteristics of intermittence and randomness, which makes it a challenge to accurately predict solar power generation power, and it is difficult to achieve the desired effect. Therefore, by fully considering the relationship between power generation data and climate factors, a new prediction method is proposed based on sliced bidirectional long short term memory and the attention mechanism. The prediction results show that the presented model has higher accuracy than the common prediction models multi-layer perceptron, convolution neural network, long short term memory and bidirectional long short term memory. The presented sliced bidirectional cyclic network has high prediction accuracy by low root mean square error and mean absolute error of 1.999 and 1.159 respectively. The time cost is only 24.32% of that of long short term memory network and 13.76% of that of bidirectional long short term memory network.
Subject
Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献