Study of China's Optimal Concentrated Solar Power Development Path to 2050

Author:

Zhang Xin,Dong Xiaojia,Li Xinyu

Abstract

As an important form of clean energy generation that provides continuous and stable power generation and is grid-friendly, concentrated solar power (CSP) has been developing rapidly in recent years. It is expected that CSP, together with wind and solar photovoltaic, will constitute a stable, high percentage of renewable energy generation system that will be price-competitive with conventional energy sources. In this study, a dynamic programming approach based on minimum cost was used to explore the optimal development path of CSP generation in China by 2050. A learning curve model and a technology diffusion model were used as constraints. The impact of factors such as Gross Domestic Product (GDP) growth, incentive policies, technological advances, grid absorptive capacity, and emission regulation schemes on the development of CSP generation was discussed in the context of sensitivity analysis and scenario comparison. This study has reached the following conclusions: 1) the government cannot achieve the target for cumulative installed capacity in 2050. Considering the interaction of relevant factors, the target would be hard to achieve even under favorable conditions; 2) as a key factor affecting the development of CSP, the incentive policy is closely related to construction cost. It is noteworthy that although the target can be achieved with a higher investment ratio, the CSP industry has failed to create a good ecological environment in the early stage of development; 3) GDP growth and learning rate are important factors influencing the development path in later stages; and 4) although they operate as potential factors affecting construction costs, grid absorptive capacity and carbon permit prices have limited impact on the development of CSP generation.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3