Intelligent grid load forecasting based on BERT network model in low-carbon economy

Author:

Tao Peng,Ma Hao,Li Chong,Liu Linqing

Abstract

In recent years, the reduction of high carbon emissions has become a paramount objective for industries worldwide. In response, enterprises and industries are actively pursuing low-carbon transformations. Within this context, power systems have a pivotal role, as they are the primary drivers of national development. Efficient energy scheduling and utilization have therefore become critical concerns. The convergence of smart grid technology and artificial intelligence has propelled transformer load forecasting to the forefront of enterprise power demand management. Traditional forecasting methods relying on regression analysis and support vector machines are ill-equipped to handle the growing complexity and diversity of load forecasting requirements. This paper presents a BERT-based power load forecasting method that leverages natural language processing and image processing techniques to enhance the accuracy and efficiency of transformer load forecasting in smart grids. The proposed approach involves using BERT for data preprocessing, analysis, and feature extraction on long-term historical load data from power grid transformers. Multiple rounds of training and fine-tuning are then conducted on the BERT architecture using the preprocessed training datasets. Finally, the trained BERT model is used to predict the transformer load, and the predicted results are compared with those obtained based on long short-term memory (LSTM) and actual composite values. The experimental results show that compared with LSTM method, the BERT-based model has higher short-term power load prediction accuracy and feature extraction capability. Moreover, the proposed scheme enables high levels of accuracy, thereby providing valuable support for resource management in power dispatching departments and offering theoretical guidance for carbon reduction initiatives.

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3