Stability Analysis of Breakwater Armor Blocks Based on Deep Learning

Author:

Zhu Pengrui1ORCID,Bai Xin2,Liu Hongbiao13ORCID,Zhao Yibo3

Affiliation:

1. Tianjin Research Institute for Water Transport Engineering, M.O.T., National Engineering Laboratory for Port Hydraulic Contruction Technology, Tianjin 300456, China

2. School of Electrical and Mechanical Engineering, Handan University, Handan 056005, China

3. School of Civil Engineering, Institute of Disaster Prevention, Sanhe 065201, China

Abstract

This paper aims to use deep learning algorithms to identify and study the stability of breakwater armor blocks. It introduces a posture identification model for fender blocks using a Mask Region-based Convolutional Neural Network (R-CNN), which has been enhanced by considering factors affecting breakwater fender blocks. Furthermore, a wave prediction model for breakwaters is developed by integrating Bidirectional Encoder Representations from Transformers (BERTs) with Bidirectional Long Short-Term Memory (BiLSTM). The performance of these models is evaluated. The results show that the accuracy of the Mask R-CNN and its comparison algorithms initially increases and then decreases with higher Intersection Over Union (IOU) thresholds, peaking at 95.16% accuracy at an IOU threshold of 0.5. The BERT-BiLSTM wave prediction model maintains a loss value around 0.01 and an accuracy of approximately 90.00%. These results suggest that the proposed models offer more accurate stability assessments of breakwater armor blocks. By combining the random forest prediction model with BiLSTM, the wave characteristics and fender posture can be predicted better, offering reliable decision support for breakwater engineering.

Funder

National Key R&D Program of China

China Fundamental Research Funds for the Central Research Institutes

Science and Technology Program of China Guangxi Province

Science and Technology Program of China Zhejiang Province

Handan University Education and Teaching Reform Research and Practice Project

Handan University Educational Science Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3