Which Parameters Determine the Low-Light Behaviour of CIGSSe-Based Thin-Film Solar Cells?

Author:

Heise Stephan J.,Taskesen Teoman,Ndoukoue Chintouo Abdel Kader,Ohland Jörg

Abstract

The performance of solar cells in realistic operating conditions usually differs from the specified efficiency at standard test conditions (STC). Among other factors, the illumination intensity (irradiance) is often lower than at STC, which leads to a lower device efficiency. Therefore, it becomes important to optimize the output power at low-light conditions in order to achieve a high energy yield at a specific location. For this purpose, it is essential to have a detailed knowledge of the relevant parameters that govern the low-light behaviour. This study investigates the impact of the diode parameters on the low-light performance of thin-film solar cells based on chalcopyrite Cu(In,Ga)(S,Se)2 absorbers. Experimental irradiance-dependent current-voltage results are analysed with the help of an analytical model. For each parameter the contributions of its absolute value and its irradiance dependence are assessed. Additionally, relations between the diode parameters and material parameters are examined by analysing different cell variations. The results show that cell performance at low-light conditions is primarily governed by the irradiance dependence of the fill factor, which in turn is mainly determined by the parallel resistance of the device. Moreover, a reduction of the dark saturation current and the ideality factor towards lower irradiances is observed which indicates an irradiance-dependent change of recombination dynamics. The consequence is an increase of the open-circuit voltage at low-light conditions which indirectly also boosts the fill factor. The results suggest that cell optimization for low-light conditions should focus on improving the parallel resistance and tuning recombination in a way that the dark saturation current decreases with decreasing irradiance.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

Frontiers Media SA

Subject

Economics and Econometrics,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3