Immersive virtual reality-based learning as a supplement for biomedical engineering labs: challenges faced and lessons learned

Author:

Tandon Ishita,Maldonado Vitali,Wilkerson Megan,Walls Amanda,Rao Raj R.,Elsaadany Mostafa

Abstract

IntroductionImmersive virtual reality (VR) based laboratory demonstrations have been gaining traction in STEM education as they can provide virtual hands-on experience. VR can also facilitate experiential and visual learning and enhanced retention. However, several optimizations of the implementation, in-depth analyses of advantages and trade-offs of the technology, and assessment of receptivity of modern techniques in STEM education are required to ensure better utilization of VR-based labs.MethodsIn this study, we developed VR-based demonstrations for a biomolecular engineering laboratory and assessed their effectiveness using surveys containing free responses and 5-point Likert scale-based questions. Insta360 Pro2 camera and Meta Quest 2 headsets were used in combination with an in-person lab. A cohort of 53 students watched the experimental demonstration on VR headsets in the lab after a brief lab overview in person and then performed the experiments in the lab.ResultsOnly 28.29% of students reported experiencing some form of discomfort after using the advanced VR equipment as opposed to 63.63% of students from the previous cohort. About 40% of the students reported that VR eliminated or reduced auditory and visual distractions from the environment, the length of the videos was appropriate, and they received enough information to understand the tasks.DiscussionThe traditional lab method was found to be more suitable for explaining background information and lab concepts while the VR was found to be suitable for demonstrating lab procedures and tasks. Analyzing open-ended questions revealed several factors and recommendations to overcome the potential challenges and pitfalls of integrating VR with traditional modes of learning. This study provides key insights to help optimize the implementation of immersive VR to effectively supplement in-person learning experiences.

Publisher

Frontiers Media SA

Reference37 articles.

1. Adoption of virtual reality technology in higher education: an evaluation of five teaching semesters in a purpose-designed laboratory;Marks;Educ Inf Technol,2022

2. Using virtual reality in biomedical engineering education;Singh;J Biomech Eng,2020

3. Teaching and learning physics using 3D virtual learning environment: a case study of combined virtual reality and virtual laboratory in secondary school;Bogusevschi;J Comput Math Sci Teach,2020

4. Virtual and augmented reality for biomedical applications;Venkatesan;Cell Rep Med,2021

5. Challenges and prospects of virtual reality and augmented reality utilization among primary school teachers: a developing country perspective;Alalwan;Stud Educ Eval,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3