Comparison of Pattern Discrimination Mechanisms of Hebbian and Spatiotemporal Learning Rules in Self-Organization

Author:

Tsukada Hiromichi,Tsukada Minoru

Abstract

The spatiotemporal learning rule (STLR) proposed based on hippocampal neurophysiological experiments is essentially different from the Hebbian learning rule (HEBLR) in terms of the self-organization mechanism. The difference is the self-organization of information from the external world by firing (HEBLR) or not firing (STLR) output neurons. Here, we describe the differences of the self-organization mechanism between the two learning rules by simulating neural network models trained on relatively similar spatiotemporal context information. Comparing the weight distributions after training, the HEBLR shows a unimodal distribution near the training vector, whereas the STLR shows a multimodal distribution. We analyzed the shape of the weight distribution in response to temporal changes in contextual information and found that the HEBLR does not change the shape of the weight distribution for time-varying spatiotemporal contextual information, whereas the STLR is sensitive to slight differences in spatiotemporal contexts and produces a multimodal distribution. These results suggest a critical difference in the dynamic change of synaptic weight distributions between the HEBLR and STLR in contextual learning. They also capture the characteristics of the pattern completion in the HEBLR and the pattern discrimination in the STLR, which adequately explain the self-organization mechanism of contextual information learning.

Funder

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Developmental Neuroscience,Neuroscience (miscellaneous)

Reference27 articles.

1. Metaplasticity: the plasticity of synaptic plasticity;Abraham;Trends Neurosci,1996

2. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex;Bienenstock;J. Neurosci,1982

3. A synaptic model of memory: long-term potentiation in the hippocampus;Bliss;Nature,1993

4. Computational approaches to network processing and plasticity;Frégnac;Long-term Potentiation: A Debate of Current Issues,1991

5. Dynamical cell assembly hypothesis-theoretical possibility of spatio-temporal coding in the cortex;Fujii;Neural Netw,1996

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3