Multiplexing of TMT labeling reveals folate-deficient diet-specific proteome changes in NTDs

Author:

Pei Pei,Shen Jinying,He Xuejia,Zeng Yubing,Zhang Ting,Wang Shan

Abstract

Introduction: In the early stage of embryonic development, the neural tube (NT) cannot be closed properly due to some complex factors, including environmental factors, genetic factors, and the relationship between various factors, leading to the occurrence of neural tube defects (NTDs).Methods: In this study, we induced a mouse model of NTDs by feeding mice with a low-folate diet and intraperitoneally injecting them with 1.5 mg/kg methotrexate on E7.5. Fetal mice were achieved at E13.5, and we extracted proteins from brain tissues with trypsin digestion. After enzymatic digestion, peptides were labeled with TMT/iTRAQ and separated in high-performance liquid chromatography (HPLC) for subsequent liquid chromatography tandem mass spectroscopy (LC-MS/MS) analysis. We used gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation to analyze proteomic changes and analyze the functional enrichment of differentially expressed proteins (DEPs) in the NTD mice tissues.Results: A low-folate-induced mouse model was successfully constructed. Folate was used as a sensitizing agent, and the teratogenicity rate of the NTD fetal mice increased to 36.5% when the concentration of methotrexate was at 1.5 mg/kg. Mass spectrometry was used to identify 6,614 proteins, and among them, 5,656 proteins were quantified. In the following proteomic analysis, GO classification and KEGG pathway enrichment analysis were conducted, and heatmaps were drawn for differentially expressed proteins (DEPs). The main pathways associated with NTDs, such as the Hedgehog, Wnt, p53, and Hippo signaling pathways and the one-carbon pool mediated by folate, can be identified through a protein–protein interaction (PPI) network. It was also found that the regulation of ribosomal proteins, such as RPL13 and RPL14, which are upregulated in NTDs, has a certain impact on neural tube development.Discussion: Our results revealed proteomic changes in the tissues of low-folate-induced NTD mice. Validation showed that ribosomal proteins play a regulatory role during the development of NTDs and provides new ideas for the pathogenesis and preventive measures of NTDs.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Umami Altering Salivary Proteome: A Study across a Sensitivity Spectrum on Subjects;Journal of Agricultural and Food Chemistry;2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3