MCI-frcnn: A deep learning method for topological micro-domain boundary detection

Author:

Tian Simon Zhongyuan,Yin Pengfei,Jing Kai,Yang Yang,Xu Yewen,Huang Guangyu,Ning Duo,Fullwood Melissa J.,Zheng Meizhen

Abstract

Chromatin structural domains, or topologically associated domains (TADs), are a general organizing principle in chromatin biology. RNA polymerase II (RNAPII) mediates multiple chromatin interactive loops, tethering together as RNAPII-associated chromatin interaction domains (RAIDs) to offer a framework for gene regulation. RAID and TAD alterations have been found to be associated with diseases. They can be further dissected as micro-domains (micro-TADs and micro-RAIDs) by clustering single-molecule chromatin-interactive complexes from next-generation three-dimensional (3D) genome techniques, such as ChIA-Drop. Currently, there are few tools available for micro-domain boundary identification. In this work, we developed the MCI-frcnn deep learning method to train a Faster Region-based Convolutional Neural Network (Faster R-CNN) for micro-domain boundary detection. At the training phase in MCI-frcnn, 50 images of RAIDs from Drosophila RNAPII ChIA-Drop data, containing 261 micro-RAIDs with ground truth boundaries, were trained for 7 days. Using this well-trained MCI-frcnn, we detected micro-RAID boundaries for the input new images, with a fast speed (5.26 fps), high recognition accuracy (AUROC = 0.85, mAP = 0.69), and high boundary region quantification (genomic IoU = 76%). We further applied MCI-frcnn to detect human micro-TADs boundaries using human GM12878 SPRITE data and obtained a high region quantification score (mean gIoU = 85%). In all, the MCI-frcnn deep learning method which we developed in this work is a general tool for micro-domain boundary detection.

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3