Exosomal miRNA Profiling is a Potential Screening Route for Non-Functional Pituitary Adenoma

Author:

Lyu Liang,Li Haiyan,Chen Cheng,Yu Yang,Wang Li,Yin Senlin,Hu Yu,Jiang Shu,Ye Feng,Zhou Peizhi

Abstract

Non-functional pituitary adenomas (NFPAs) are one of the most prevalent pituitary adenoma subtypes. The lack of reliable screening approach for NFPAs for the insidious clinical course usually leads to delays in medical therapy and consequently worse prognosis. Hence, we employed a sequence cohort (patient: control, 6:2) and a validation cohort (patient: control, 22:8) to develop a serum exosomal miRNA profile-based method for NFPA screening and prognosis prediction. We found that a total of 1,395 kinds of human miRNA were detected. Compared with healthy donors, 18 up-regulated and 36 down-regulated miRNAs showed significant expression alterations in NFPA patients. Target genes of differentially expressed miRNAs are mainly enriched in axonogenesis and cancer-associated terms. After validation, hsa-miR-486-5p, hsa-miR-151a-5p, hsa-miR-652-3p_R+1, and hsa-miR-1180-3p were promising biomarkers for NFPA, in which miR-486-5p was the most competent one. After a median of 33 months of prospective follow-up, exosomal hsa-miR-486-5p also was an efficient predictive biomarker for progression or relapse of NFPAs. By protein-protein interaction network construction of hsa-miR-486-5p targeted genes, the core modules revealed a high possibility that exosomal hsa-miR-486-5p regulated tumor progression by epigenetic regulation of MAPK signaling pathways. In conclusion, exosomal hsa-miR-486-5p, hsa-miR-151a-5p, hsa-miR-652-3p_R+1, and hsa-miR-1180-3p are candidate biomarkers for diagnosis and screening of NFPAs. More importantly, prospective follow-up reveals that hsa-miR-486-5p can be regarded as a significant predictor for prognosis of NFPAs.

Funder

Department of Science and Technology of Sichuan Province

Health and Family Planning Commission of Sichuan Province

West China Hospital, Sichuan University

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3