Translational regulation by ribosome-associated quality control in neurodegenerative disease, cancer, and viral infection

Author:

Lu Bingwei

Abstract

Translational control at the initiation, elongation, and termination steps exerts immediate effects on the rate as well as the spatiotemporal dynamics of new protein synthesis, shaping the composition of the proteome. Translational control is particularly important for cells under stress as during viral infection or in disease conditions such as cancer and neurodegenerative diseases. Much has been learned about the control mechanisms acting at the translational initiation step under normal or pathological conditions. However, problems during the elongation or termination steps of translation can lead to ribosome stalling and ribosome collision, which will trigger ribosome-associated quality control (RQC) mechanism. Inadequate RQC may lead to the accumulation of faulty translation products that perturb protein homeostasis (proteostasis). Proteostasis signifies a cellular state in which the synthesis, folding, and degradation of proteins are maintained at a homeostatic state such that an intact proteome is preserved. Cellular capacity to preserve proteostasis declines with age, which is thought to contribute to age-related diseases. Proteostasis failure manifested as formation of aberrant protein aggregates, epitomized by the amyloid plaques in Alzheimer’s disease (AD), is a defining feature of neurodegenerative diseases. The root cause of the proteostasis failure and protein aggregation is still enigmatic. Here I will review recent studies supporting that faulty translation products resulting from inadequate RQC of translational stalling and ribosome collision during the translation of problematic mRNAs can be the root cause of proteostasis failure and may represent novel therapeutic targets for neurodegenerative diseases. I will also review evidence that translation regulation by RQC is operative in cancer cells and during viral infection. Better understanding of RQC mechanism may lead to novel therapeutic strategies against neurodegenerative diseases, cancer, and viral infections, including the ongoing COVID-19 pandemic.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3