Translation stalling induced mitochondrial entrapment of ribosomal quality control related proteins offers cancer cell vulnerability

Author:

ojha Rani1ORCID,Tantray Ishaq2,Banerjee Shouryarudra1,Rimal Suman2,Thirunavukkarasu Sandiya1,Srikris Saripella3,Chiu Wah2ORCID,Mete Uttam1,Sharma Aditya1,Kakkar Nandita1,Lu Bingwei2ORCID

Affiliation:

1. Post Graduate Institute of Medical Education and Research

2. Stanford University

3. Institute of Science, Banaras Hindu University

Abstract

Abstract

Ribosome-associated quality control (RQC) monitors ribosomes for aberrant translation. While the role of RQC in neurodegenerative disease is beginning to be appreciated, its involvement in cancer is understudied. Here, we show a positive correlation between RQC proteins ABCE1 and ZNF598 and high-grade muscle-invasive bladder cancer. Translational stalling by the inhibitor emetine (EME) leads to increased mitochondrial localization of RQC factors including ABCE1, ZNF598, and NEMF, which are continuously imported into mitochondria facilitated by increased mitochondrial membrane potential caused by EME. This reduces the availability of these factors in the cytosol, compromising the effectiveness of RQC in handling stalled ribosomes in the cytosol and those associated with the mitochondrial outer membrane (MOM). Imported RQC factors form aggregates inside the mitochondria in a process we term stalling-induced mitochondrial stress (SIMS). ABCE1 plays a crucial role in maintaining mitochondrial health during SIMS. Notably, cancer stem cells (CSCs) exhibit increased expression of ABCE1 and consequently are more resistant to EME-induced mitochondrial dysfunction. This points to a potential mechanism of drug resistance by CSCs. Our study highlights the significance of mitochondrial entrapment of RQC factors such as ABCE1 in determining the fate of cancer cells versus CSCs. Targeting ABCE1 or other RQC factors in translational inhibition cancer therapy may help overcome drug resistance.

Publisher

Springer Science and Business Media LLC

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3