Regeneration of the dermal skeleton and wound epidermis formation depend on BMP signaling in the caudal fin of platyfish

Author:

Rees Lana,König Désirée,Jaźwińska Anna

Abstract

Fin regeneration has been extensively studied in zebrafish, a genetic model organism. Little is known about regulators of this process in distant fish taxa, such as the Poeciliidae family, represented by the platyfish. Here, we used this species to investigate the plasticity of ray branching morphogenesis following either straight amputation or excision of ray triplets. This approach revealed that ray branching can be conditionally shifted to a more distal position, suggesting non-autonomous regulation of bone patterning. To gain molecular insights into regeneration of fin-specific dermal skeleton elements, actinotrichia and lepidotrichia, we localized expression of the actinodin genes and bmp2 in the regenerative outgrowth. Blocking of the BMP type-I receptor suppressed phospho-Smad1/5 immunoreactivity, and impaired fin regeneration after blastema formation. The resulting phenotype was characterized by the absence of bone and actinotrichia restoration. In addition, the wound epidermis displayed extensive thickening. This malformation was associated with expanded Tp63 expression from the basal epithelium towards more superficial layers, suggesting abnormal tissue differentiation. Our data add to the increasing evidence for the integrative role of BMP signaling in epidermal and skeletal tissue formation during fin regeneration. This expands our understanding of common mechanisms guiding appendage restoration in diverse clades of teleosts.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Frontiers Media SA

Subject

Cell Biology,Developmental Biology

Reference68 articles.

1. Old questions, new tools, and some answers to the mystery of fin regeneration;Akimenko;Dev. Dyn.,2003

2. Shh promotes direct interactions between epidermal cells and osteoblast progenitors to shape regenerated zebrafish bone;Armstrong;Development,2017

3. Actinopterygian postcranial skeleton with special reference to the diversity of fin ray elements, and the problem of identifying homologies;Arratia,2008

4. Complexities of early teleostei and the evolution of particular morphological structures through time;Arratia;Copeia,2015

5. The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations;Azevedo;PLoS One,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3